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Abstract. The angular variation of the gyromagnetic factor measured by electron spin 
resonance (ESR) in single crystals of several copper-amino acid complexes (CAC) does 
not follow the second-order tensorial dependence expected for spins 1/2. Fourth-order 
contributions with magnitudes of up to 6g = 0.01 have been clearly distinguished from the 
ESR data. CAC have two copper positions per unit cell differing in the orientation of their 
anisotropic gyromagnetic tensors. The ESR spectra show a single, exchange collapsed line 
for both sites. Linewidth and magneticsusceptibility measurements indicate exchange inter- 
actions 0.2 K > lJI > 0.6 K, and a low-dimensional magnetic behaviour which is supported 
by the structural information. 

The observed anomalous contribution to the gyromagnetic factor is examined in terms 
of the theory of Kubo and Tomita, and we analyse three types of contributions to the shifts. 
One  arises from the difference between the Zeeman interactions for the two sites, and is 
produced when the non-secular part of this term is modulated by the exchange interaction. 
The dipole-dipole interaction between copper ions gives rise to two additional contributions. 
One  is due to the non-secular terms, while the other arises because of the low symmetry of 
CAC, and becomes important in magnetic low-dimensional systems. Only the secular part of 
this last term is studied, giving a contribution that depends on the orientation of the micro- 
wave field. Although the theoretical results obtained within the standard scheme give 
contributions with the right order of magnitude, the overall agreement with our experimental 
results is poor, suggesting that a more detailed analysis is required. 

1. Introduction 

Copper-amino acid complexes (CAC) form a large group of compounds whose magnetic 
properties have been extensively studied by magnetic susceptibility [l, 21 and electron 
spin resonance (ESR) [2-81 techniques in the last few years. The magnitudes of the 
exchange interactions IJI are between 0.2 and 0.6 K, and in most cases they exhibit a 
low-dimensional behaviour in the spin dynamics. The ESR spectra consist of a single 
collective resonance, produced by the collapse of the resonances of the different copper 
species in the lattice, and of the hyperfine structure, due to the exchange. The linewidth 
of this resonance is strongly affected by exchange narrowing. 

Most ESR studies performed in paramagnetic compounds analyse the linewidth 
and lineshapes, and their dependence on the direction of the applied magnetic field. 
Information about the exchange interactions and the spin dynamics can be extracted 
from the data [9-141. Since the exchange interactions in CAC have values close to 
those of the Zeeman interactions in normal electron paramagnetic resonance (EPR) 
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experiments, one may expect that, besides producing changes in the linewidth, the 
position of the resonances could be noticeably modified by the exchange. The observed 
lineshifts may also give information about the exchange. 

Measurements of absolute lineshifts are not common, being in general changes with 
external parameters (temperature, pressure, frequency, etc) [15-171. The reason is 
simple; widths and shapes are absolute quantities, while shifts are related to a reference 
position, which is generally unknown. 

In recent years we have studied several CAC using ESR. Most of them show an angular 
dependence of the position of the resonance, with an unexpected high-order angular 
contribution, easily separated from the normal second-order tensorial angular depen- 
dence. To the best of our knowledge, this type of behaviour has not been observed 
before. This contribution to the angular variation of the squared gyromagnetic factor 
proportional to fourth-order spherical harmonics is not expected for spins 1/2, and is 
attributed to the collective nature of the resonance. 

The observed lineshifts are analysed in terms of the theory of Kubo and Tomita [9] 
in its form extended to allow for low crystal symmetry effects [17]. 

Following standard methods and approximations we calculated the lineshifts pro- 
duced by the contribution of different mechanisms. The results of these calculations 
are compared with experimental results in Cu(L-Ala),. They reproduce the order of 
magnitude of those observed, but the overall agreement with the data is poor. Several 
sources that may cause the observed discrepancies can be identified. Cross correlation 
between spins, which are usually neglected when considering the short-time regime, 
may be important. Also, the theory introduced by Richards [14] in order to analyse the 
linewidths in low-dimensional systems may have to be modified in order to account for 
low-symmetry effects that contribute to the lineshifts [ 181. 

2. Experimental procedure and results 

The copper-amino acid CU(AA) complexes we are dealing with crystallise in the p2, or 
p2, /c  space groups, with two C U ( A A ) ~  molecules per unit cell. There are two rotated 
copper sites A and B, differing by a 180" rotation around the 6 axis, plus a translation. 
Then, neglecting the hyperfine structure due to the copper nuclear spins, two ESR lines 
having anisotropic gyromagnetic factors and corresponding to the two spin-1/2 copper 
species should be observed. However, antiferromagnetic exchange interactions between 
copper neighbours having magnitudes 0.2 K < /Jl < 0.6 K collapse to one of these two 
resonances and their hyperfine structure, and consequently the observed response of 
the spin system is a single collective resonance [3,4,6-8]. 

The type of lineshifts analysed in this paper have been observed by ESR studies in at 
least five copper-amino acid complexes. Here we will give a description of the general 
experimental findings using Cu(L-Ala)*, the copper complex of the amino acid L-alanine, 
as an example, including an account of our actual theoretical understanding of the 
problem. 

High-quality single-crystal samples of several CAC are easily grown from aqueous 
solutions [2-81. The crystals are thin plates, which can be accurately oriented, and are 
well suited for ESR techniques. They were glued with the d' = 6 x t ,  6 and t crystal axes 
parallel to the f, j and i orthogonal axes of a sample holder. The sample holder was 
positioned inside of the microwave cavity so the magnetic field B could be rotated in the 
xy,  zx,  z y ,  y u  and yw planes. The directions U and w are defined as ( -1 /d2 ,0 ,  
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Figure 1. (A) Values of ( h ~ / , u ~ B ) ~  measured at 
room temperature in thexy (a’b) planeof asingle- 
crystal sample of Cu(L-Ala)*, as a function of the 
equatorial angle 4. The full curve represents a 
least-squares fit to a gyromagnetic tensor 

a B (equation (1)) with components given in table 1. 

30 6o I2O 150 imental data displayed in (A), using equation ( 2 )  
I I I I I (B) Values of 6(0, 4) obtained from the exper- 

# [degrees] and the components of theg’ tensor of table 1. 

l / d 2 )  and ( l / d 2 , 0 ,  l / d 2 ) ,  respectively, in thex, y ,  z system. The ESR data were taken 
with a standard spectrometer working at 9.3 GHz, at room temperature. The position 
of the observed resonance was measured as a function of the direction of B at 5” intervals 
in each of the five planes. 

Figure 1A displays the squared gyromagnetic factor g2xp obtained for B in the xy 
plane, as a function of the equatorial angle @, obtained in single crystals of C u ( ~ - A l a ) ~ .  
Similar results were obtained in the other four planes studied. In the planes xy, z y ,  y u  
and yw, the orientations of the axes were determined considering that the symmetry of 
the sample assures extrema of the angular variation of g2 along the9 axis. This symmetry 
does not allow one to determine the position of the axes in the zx plane, and in this case 
they were obtained from the g-values measured in the other planes. 

In general, for a spin 1/2, the observed angular variation of the squared gyromagnetic 
factor gzx, is fitted by a g 2  = g g tensor projected on the direction of the magnetic field 
B ,  using gzxp = b - g g b,  where 

b = B / / B /  = (sin e cos $, sin e sin @, cos e). 
For symmetry reasons in C u ( ~ - A l a ) ~  one has g:y = g;, = 0 and the expected angular 

variation is 

&,(e, @) = g:, sin28 cos2@ + g;y sin28 sin2@ + gs, cos2e 

+ 2g’,x sin e cos e cos 4. (1) 

The full curve in figure 1A gives the best fit of the values of gzxp measured in the xy plane 
to this function. This and other similar fits in the remaining planes allowed us to 
determine the values of the components of the g2 tensor given in table 1. However, 
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Table 1. Values of the components of the squared gyromagnetic tensor gz and the fourth- 
order coefficients A4, defined in equation ( 2 ) ,  obtained from the data in the planes xy, ry ,  
y u ,  yw and zx.  

(gz)xr = 4.5903 t 0.0003 
(g2),," = 4.3954 t 0.0003 
(gz)2z = 4.4801 t 0.0003 
(g2),x = -0.3319 t 0.0003 

A40 = (-0.076 t 0.035) X 

A4, = (0.98 t 0.07) X 

A,, = (-0.27 t 0.04) X 

A43 = (-0.193 i. 0.005) x 
AJ4 = (1.47 t 0.07) x 

systematic differences between the values of gzxp and those obtained with the tensor gz 
were observed, and are amplified in figure lB,  where we plot 

s(e, $1 = (g2,,p - h - g - g - 6)/6. g .  g .  h 
for 6 in the xy plane. These values of 6( 0,  $) have a well defined angular variation with 
a 90" periodicity observed in the five measured planes, and show that, besides the second- 
order tensorial angular dependence of g;,, given by equation ( l ) ,  angular components 
of fourth (and higher) order in a spherical harmonics expansion should be added to 
equation (1) to improve the agreement with the experiments. The crystal symmetry 
allows only for the following five angular functions of fourth order [19]: 

c,,(e, $) = (1/8)(35 C O S ~ O  - ~ O C O S %  + 3) 

c , l ( e ,$ )  = ~ V \ / 1 0 / ~ ~ ~ ~ c o s 3 ~ - ~ c o s ~ ~ s i n ~ c o s ~  

c4*(e ,  4) = (V5/4) (7 COS*O - 1) sin20 cos 2$ 

c43(e, $1 = (V/70/4) sin3e COS e COS 3q5 

C,,(e, $) = (V%/8) sin48 cos 44. 
Since the isotropic and second-order angular dependences of gzxp are eliminated in the 
definition of 6(e, $), we propose 

~ ( 0 ,  $) = (gZ,xp - h * ~ * ~ . h ) / h . g . g * b =  X ~ 4 m ~ 4 m ( e , ~ )  (2) 
m 

and obtained the values of the coefficients given in table 1 from least-squares fits of 
equation (2) to the experimental data in the five planes. The full curve in figure 1B is 
obtained with these values. The angular variation of the lineshifts is one of the charac- 
teristic features that allow one to determine the coefficients 

The experimental data also show smaller contributions to gzxp(e, 4) with periodicity 
of 60°, which could be fitted to sixth-order angular functions. The analysis of these 
contributions will not be considered here. 

in equation (2). 

3. The magnetic Hamiltonian and the shifts of the ESR lines 

In attempting to analyse the experimental results we describe the magnetic interactions 
in a single-crystal sample of CAC. They contain electronic S = 1 spins coupled to their 
nuclear spins, interacting through exchange and dipole-dipole couplings, in the presence 
of an externally applied magnetic field B .  In each unit cell i there are two species A and 
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B of electronic spins, S i A  and SIB, at RiA and RiB,  related by a screw axis operation and 
having anisotropic gyromagnetic tensors g ,  and gg. The Hamiltonian of the system is 

H = HZ + Hex f H d d  + Hhyp.  ( 3 )  

In equation (3), the first term is the Zeeman interaction, 

where p0 is the Bohr magneton. The second, 

with a, /? = A, B, is the exchange interaction. The third, 

Hdd = a X S i ,  * D(icu, i/?) - Sip 
in.$ 

with 

is the hyperfine interaction between the electronic spins Si ,  and the nuclear spins Zi , .  
The total spin of the system is 

Defining, 

and 

G = ( g ,  - gB)/2 

we can write the Zeeman interaction in equation (4) as 

H Z  = HZO + Hi 
where 
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HzO = P 0 S . g .  B ( I l a )  

H i  = POT. G * B ( I l b )  

is the main contribution to H z ,  and 

is the ‘residual Zeeman interaction’. Since HZO of equation (l la) is proportional to S of 
equation (9a), it is true that 

[Hzo,  H e x 1  = 0. (12)  

H = H ,  + H ’  

HO = HZO + H e x  

H’ = Hi + H d d  + Hhrp. 

The full Hamiltonian of equation (3) can be written as 

where 

(13) 

(14) 

and 

We choose 2 = g 0 6/g,  with 6 = B/ lB /  and g = lg - 61. With this election H,, = gpoBSZ 
and He, of equation ( 5 )  are diagonal. 

Typically in CAC, HZo and Hex have similar magnitudes (0.3-1.0 K),  while the com- 
ponents of H’ are smaller contributions (0.01-0.10 K). Because of equation (12 ) ,  the 
spectrum consists of a single ‘exchange collapsed’ line due to Hoof equation (13). Since 
[H‘ , H,] = 0, H’ of equation (14) shifts and broadens this resonance, and may be treated 
using perturbation theory when H’ < Hex and H’ < HzO. 

In a magnetic resonance experiment the RF power absorbed by the sample is given 
by the imaginary part of the dynamic magnetic susceptibility ~”(o) which at high tem- 
peratures T (hw < k T )  can be written as 

where M h  = M his the component of the magnetic moment operator along the direction 
h = H,/IH,I of the RF field and Vis the volume of the sample. The time dependence of 
M h  is produced by the full Hamiltonian H of equation (3): 

M h  ( t )  = exp(iHt/h)Mh exp( -iHt/h). 

The angular brackets in equation (15) indicate thermal averages defined as (Op(t) Op) = 
Tr(p Op(t) Op).  The theory of Kubo and Tomita (KT) provides a method to calculate 
the ESR spectrum using equation (15). It gives 

OV 
2kT 

~ “ ( w  - o0) = - ( M + M - )  @(t)  exp[-i(o - O O ) ~ ]  d t  

where w O  = gpOH/h is the Larmor frequency, and the relaxation function @(t) is defined 
as 

@(t) = exp (- i,’ K(1, t’)  dt ’ ) .  

The function K(t ,  t‘)  was calculated by KT up to second order in H ’ ,  and was extended 
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by Natsume et a1 in order to allow for contributions arising in low-symmetry magnetic 
systems [16, 171. Defining 

H’(t) = exp( -iH,t/h)H’ exp(iHi,t/h) 

one obtains 

K(t ,  t ’ )  = K y t ,  t’) + KLS(t’) 

where 

will be called the ‘high-symmetry’ (HS) term. The ‘low-symmetry’ (LS) contribution 
KLS(t‘) is 

x exp( -2iwot’)} (19) 

(20) 

with 

b2 , - - - (h  - g e , l2/1h - g e + 1 = 2(h * g e , 12//Ih 0 g g h I. 
In equation (20) the directions e ,  are related to the P and 9 axes used to define H o  and 
H’ by 

e ,  = T(P i j) /V2. 

However, the P and9 axes do not need to be defined explicitly, and only .t is important, 
as expected. 

KLS(t’) of equation (19) does not depend on t and gives a non-zero contribution only 
when the symmetry of the spin distribution is low. It is important to remark that while 
KHS(t, t’) of equation (18) depends only on the direction b of the applied static field, 
KLS(t’) depends also on the direction h of the RF field H I .  

To calculate K(t, t’) of equations (17)-(19) we analyse the contributions to H’ arising 
from operators linear (Hhf and H i  of equations ( l l b )  and (8)) and bilinear (Hdd of 
equations (6) and (7)) in spin variables. 

There are two sources of time dependence in the HS contributions. One is produced 
by H,, and appears through the spin correlation functions. The other affects the non- 
secular terms H’ (those not commuting with H,,) which are harmonically modulated at 
the Larmor frequency w,. Secular contributions to KHS(t, t’) are real, and the non- 
secular are complex. Therefore, the secular contributions broaden, while the non- 
secular broaden and shift the resonance [12, 141. Since we want to analyse resonance 
shifts, we will only deal with the non-secular HS contributions. Similarly, due to the 
imaginary factor i in equation (19), we will retain only the secular part of the LS term 
[17]. It can be proved that the contributions of H i  and Hhf and the non-secular parts of 
Hdd to KLS(t’) of equation (19) are small compared with the non-secular HS terms, and 
can be neglected. 

As explained previously, the resonance line was found to be shifted with reference 
to the position predicted by an effective gyromagnetic tensor. This shift was described 
by the function S(0, @), which was fitted to fourth-order tesseral harmonics, as given by 
equation (2). 
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From the contributions to the shifts of the HS terms described previously, those giving 
rise to angular terms of fourth order involve only the non-secular parts of the residual 
Zeeman and the dipole-dipole interactions. It can be easily shown that f f h f  does not 
introduce this kind of contribution. The secular part of the dipole-dipole interaction 
contributes through the LS term. In order to calculate these contributions explicitly it is 
necessary to propose a time dependence for the spin correlation functions. The main 
difficulty appears when describing the long-time behaviour of these functions. They 
are acceptedly regulated by spin diffusion, and consequently depend strongly on the 
magnetic dimensionality of the sample [14]. In the case of non-secular HS contributions 
the presence of exp(iqwot) factors, rapidly fluctuating with the Larmor frequency, 
average to zero any slowly decaying behaviour, and only the short-time parts of the 
correlation functions become important. If we assume that in this range only self- 
correlations dominate the effects of the dipole-dipole interaction, the fourth-order 
contribution to the HS terms can be written as 

KHS(t ,  l’)(4th = ( t  - t ’ )  ( z l ( 6 ) 1 4 t h f T ( r ’ )  exp(-ioOt) + Mq(6)14th 
q#:o 

and 

are time correlation functions associated with the residual Zeeman interaction and with 
a single spin, respectively. Also, 

Z1 (8) = W ; [ B  G * G * 6 - (6 * g * G 0 6)’/g2]/2g2 

is the second moment of the residual Zeeman interaction. The M,(6) in equation (21) 
are the tensorial components of the second moment of the dipole-dipole interaction 
given by (201: 

where 

In obtaining equation (21) the four-spin correlation functions have been decoupled into 
products of two-spin correlation functions. Only self-correlations were subsequently 
retained. This approximation affects only the functional part of the dipolar interaction. 
Although we are neglecting cross correlations in this case, it is necessary to stress that 
in the short-time regime some of these functions involving nearest neighbours may be 
of importance. Note that no approximations are involved in equation (21) in obtaining 
the contribution proportional to fT(t). 
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We assume a Gaussian decay for the correlation function [ 101 

f r ( t )  = exp(-wft2/2) 

where w, can be either wT or ws (in general wT # ws).  Then, we can perform the time 
integral involved in equation (16), and extend to x the upper limit of the integral. In 
that case the only relevant contribution to @(t)  is that containing t ,  since that containing 
t' adds only a t-independent phase factor to the integral. It is easy to show that under 
these circumstances 

~ H S ( O ,  $1 = - ( ( 6  * g * G h2/2g4 14th F(VT) 

+ 2 bmC4m(h[F(VS) - F(V9)/41) (22) 
m 

where [21] 

F(V;) = Im jox exp(-wjt2/2 + iqwot) d t  = 2V', exp[-(V;)*] 1 exp(t2) d t  

with 

" 6  
(23) 

0 

F(V',) = F(V',). 

v; = q o 0 / v 5 w ,  and v; = q w o / v 5 0 s  

bm = (9g4p;/35wi) 2 (l/RGm.jfi) Cdm(k0m.jfi). 

We have used 

and 

a.iP 

The function F( V) is plotted in figure 2 as a function of Vfor 0 < V < 2. For larger values 
of V, F(V) = 1. This function has a maximum at V = 1.5, and tends to zero for V+ 0. 
Thus, for large exchange frequencies the shift S ( O ,  q5) will vanish. It is worth while 
stressing that our theory is valid as long as the exchange is large enough to collapse the 
structures of the lines, i.e. when we, > H ' / L  From the experimental point of view the 
model we have just described depends only on two unknowns, F(VT) and (F(V7) - 
F(V:)/4. The angular functions giving the contributions to the second moments Zl(6) 
and M,(b) of the residual Zeeman and dipole-dipole interactions can be easily calculated 
using ESR results (g and G tensors) and crystallographic data. 
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Considering the contributions arising from KLS(t) ,  even in the simple case of an 
isotropic g-factor we are faced with the time dependence of the correlation functions. 
However, it is the long-time behaviour of these functions that is important in this case, 
where we consider secular contributions. We follow closely the formulation given by 
Richards [14], who assumes that after a characteristic time rc the correlation functions 
are governed by spin diffusion. In this case the dominant contribution comes from the 
q = 0 modes in the first Brillouin zone and we arrive at 

where 

1 
FLS(t)  = (l/t) 1' dt '  (- 1 exp(-Dq2t') d q  

T C  nBz BZ 

with D as the diffusion constant. The magnetic dimensionality d enters through the 
integral over the magnetic Brillouin zone, as in Richards' theory. We will treat FLS(t)  as 
an adjustable parameter, and examine the angular variation of d(8, @) given by 
equations (21) and (22). 

Although there is a dependence on the direction of the microwave field, the fourth- 
order contribution to QLS does not arise from these terms in each of the planes analysed 
in the experiments. This is because in our experiments h is always fixed, and per- 
pendicular to the plane where 6 is varied. Thus the fourth-order angular variation within 
each plane comes from the first factor within curly brackets, and the first two terms of 
the second factor. 

We give in table 2 the results for the angular contributions to the Adm corresponding 
to each of the mechanisms considered. The tensors g and G ,  defined in equations ( l o a )  
and ( lob) ,  needed to calculate Z , ( b )  were obtained from the values of the components 
of g2 given in table 2. We assume that g is a symmetric tensor and that g A  and g B  have 
axial symmetry. This last assumption allows us to obtain the values of the components 
xy and z y  of g, and gB, and then the tensor G (see [3-51). The crystallographic data [22] 
for C u ( ~ - A l a ) ~  were used to calculate M , ( b ) .  The results of table 2 must be combined 
with their corresponding F(V) and FLs factors in order to obtain the theoretical appro- 
priate A4m. 

Table 2. Values of the contributions to the angular factors from each of the mechanisms 
considered in the text. 

Residual Zeeman, HS dipole-dipole, LS dipole-dipole, 
m .44mIF(Vf) A,,,IW;) - ~(v:)/41 A,,/F,, 

0 0.208 X -0.645 X 0.627 X 
1 -0.299 X -0.348 X -0.679 X lo-' 
2 0.357 X 0.211 x 10-3 -0.811 x 10-2 
3 -0.790 X 0.362 X 10-j 0.470 X lo-" 
4 0.661 X lo-' -0.997 X 0.785 x lo-* 
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4. Discussion and conclusions 

In order to obtain the predictions of the model for the parameters A4m, we should first 
estimate values for the coefficients Fz = F(V+), FD = [F(Vi) - F(V$)/4] and FLS. The 
values of F, and FD may be obtained from figure 2 in terms of the ratios between the 
microwave frequency coo and the exchange frequencies wT and us, respectively. They 
should be between 0 and a number of the order of 1, and always positive. Considering 
the results for Cu(L-Ala)2 reported in [l] ,  both Fz and FD should be close to 1. In the 
case of the LS contribution we have closely followed the procedure given by Richards in 
dealing with contributions to the linewidths arising from the secular parts of the HS terms. 
This makes FLS(t) a time-dependent factor accompanying the angular variation of aLS, 
which in turn also results in a function of time. Since we are interested in the description 
of the central portion of the resonance, FLS(t) should be evaluated for t - 1/80.), where 
60 is the linewidth. This assumes that F L S  is a slowly varying function in this region of t ,  
and can be taken as a parameter to be obtained from the experiments. This approach 
was adopted in describing the LS contribution. 

The values of the different contributions to the Ailm were obtained from the F 
coefficients estimated as described above, and the results given in table 2. We obtain the 
same order of magnitude as the experimental value given in table 1. However, it is not 
possible to obtain an overall agreement with all the parameters with any unique set of 
values for the F coefficients. In the case of Adl it is not even possible to get the sign of 
the experimental value. 

The sources for the discrepancies between theoretical and experimental results may 
be of various kinds. Since we have analysed all the contributions to the interaction 
Hamiltonian H' of equation (14), the discrepancy should arise from some of the approxi- 
mations made during the calculations. 

One strong possibility for the failure is the assumptions adopted to select either the 
short- or the long-time behaviour of the correlation functions. 

In the case of the residual Zeeman interaction, no approximations have been made 
on the correlation functions except a Gaussian form in the short-time regime. This may 
introduce only small errors in the values of F(Vi).  It is worth mentioning that in the zx 
plane the residual Zeeman interaction does not give any contribution for symmetry 
reasons. In this plane the angular variation of the fourth-order shift of equation (2) is 
given by 

S ( 0 )  = (d/35/64)(d%A4, - 2V'7Ad2 +A4, )cos48  

+ (d%/32)  (V'7 Aill - Ai13) sin 48  

where 8 is the azimuthal angle. This vanishes identically if only the residual Zeeman 
contribution of table 2 is considered. Then, in the zx plane only the dipole-dipole 
interaction contributes to the (HS and LS) shifts. No agreement is obtained, however, 
even in this simple situation. Thus we can trace back a source of disagreement in the 
assumptions involved when considering Hdd. In this case the coupling scheme of the 
four-spin correlations plus a specific selection of the correlation functions alter the 
angular dependence of the angular factors. One of the sources for the disagreement 
could be associated with the neglect of cross correlations between neighbouring spins in 
the short-time regime for HS contributions. These cross correlations can strongly change 
the angular functions, particularly when summed over several near neighbours. This is 
because non-secular contributions involve time integrals, which are modulated at the 
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Larmor frequency (or its second harmonic). The cross correlation function is zero at t = 
0, and has a maximum at a time near to that required for a spin excitation in one spin to 
reach the neighbouring spin [NI. If the width of this maximum is similar to one cycle of 
the Larmor frequency, there will be a non-zero contribution to the time integral. This 
problem is not important when analysing linewidths where non-secular contributions 
are small, or less important than the secular ones. 

Another source for the discrepancies may be a poor description of the correlation 
function in the diffusion regime, involved in the LS contributions. This is particularly 
important in the cases of the parameters A40, A4* and A44, where the contributions of 
the LS terms are large. 

More experimental data on the lineshifts is needed to guide the calculations. For 
example, detailed lineshift measurements at different microwave frequencies may be 
helpful in order to clarify the role of the different contributions, using their known 
frequency dependence. Also, a more elaborate theoretical analysis of the correlation 
functions is needed. 

As a conclusion, it is important to remark that copper-amino acid complexes are 
interesting systems showing several features of unexpected behaviour not observed 
before in other paramagnets. 
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